ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments
نویسندگان
چکیده
With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human.
منابع مشابه
Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape
The large collections of ChIP-seq data rapidly accumulating in public data warehouses provide genome-wide binding site maps for hundreds of transcription factors (TFs). However, the extent of the regulatory occupancy space in the human genome has not yet been fully apprehended by integrating public ChIP-seq data sets and combining it with ENCODE TFs map. To enable genome-wide identification of ...
متن کاملDecoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction.
The comprehension of protein and DNA binding in vivo is essential to understand gene regulation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) provides a global map of the regulatory binding network. Most ChIP-seq analysis tools focus on identifying binding regions from coverage enrichment. However, less work has been performed to infer the physical and regulatory details insi...
متن کاملMEME-ChIP: motif analysis of large DNA datasets
MOTIVATION Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets. RESULTS The MEME-ChIP web service is designed t...
متن کاملIntegration of 198 ChIP-seq Datasets Reveals Human cis-Regulatory Regions
We analyzed 198 datasets of chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) and developed a methodology for identification of high-confidence enhancer and promoter regions from transcription factor ChIP-seq data alone. We identify 32,467 genomic regions marked with ChIP-seq binding peaks in 15 or more experiments as high-confidence cis-regulatory regions. Althoug...
متن کاملIntegrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions.
The C. elegans modENCODE Consortium has defined in vivo binding sites for a large array of transcription factors by ChIP-seq. In this article, we present examples that illustrate how this compendium of ChIP-seq data can drive biological insights not possible with analysis of individual factors. First, we analyze the number of independent factors bound to the same locus, termed transcription fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 46 شماره
صفحات -
تاریخ انتشار 2018